

NJZ UNIVERSITY TVTZ OF ÉVORA

EMSP Symposium: ALFR-ALENTEJO. 20th October 2021 Presenter: Diogo Canavarro, UEVORA.

Project **ALFR-ALENTEJO** Outline

- Overview
- Objectives
- Concept
- Expected performance
- Experimental demonstration
- Current status
- Main R&D achievements
- Upcoming activities and conclusions
- Acknowledgments
- References

Project **ALFR-ALENTEJO** Overview

- Full title: Instalação, ensaio e análise de um concentrador Advanced Linear Fresnel Reflector para a produção de electricidade por via termosolar com armazenamento térmico
- **Consortium:** Univ. Évora [PT]
- Duration: 16.12.2019 15.12.2022 → @M21
- Funding: Alentejo 2020 (ALT20-03-0145-FEDER-039487)
- UEVORA Eligible Cost: 758,346.23 €
- Website: www.alfr-alentejo.uevora.pt

Project ALFR-ALENTEJO Objectives

- The present operation is aimed at the installation, testing and analysis of an Advanced Reflective Linear Fresnel Reflector (ALFR) prototype and will be carried out by the University of Évora within the research activities of the Renewable Energies Chair (REC).
- ALFR-Alentejo has two main goals: (1) Achieve global solar-electricity conversion efficiencies above 14% in the south of the Iberian Peninsula and (2) To achieve a cost under 10€/kWh of LCOE, under storage production, at the southern latitude of Portugal and respective solar radiation levels.
- The operation will be implemented using REC/INIESC's expertise, taking advantage of all research projects currently underway and their already established national and international partnerships.

Project ALFR-ALENTEJO Concept

- Compact concept using two receivers placed in a single elevated structure;
- Asymmetric set of primary/secondary stage CEC combinations
- It uses a very large primary (L> 20m) contributing for the reduction of rows in the total field;
- The two evacuated tubular receivers can be fed by a single pipe and merge in a single exit pipe.

Project ALFR-ALENTEJO Geometric details

P,

Optic	Aperture width (m)	Total mirror aperture width (m)	Receive r radius (m)	Receiver height (m)	Number of mirrors	Mirror width (m)	Cg (X)	φ (°)
Dual Asymmetric CEC LFR Concentrator	26	22	0.035	10.8	22	1	45	49.73

Note: Cg is the geometric concentration and ϕ the rim angle (see Figure).

-20

 $\hat{2}\theta$

 \mathbf{P}_{1}

Raytracing calculations and expected performance

Optic	$\eta_{ m opt0}$	θ (°)	CAP
Dual Asymmetric CEC LFR Concentrator	0.7	0.75	0.59

Optical efficiency at normal incidence (η_{opt0}), half-acceptance angle (θ) and Concentration-Acceptance Product (CAP).

Incidence Angle Modifier (K(θ_Z)) for transversal (K_T) and longitudinal (K_L) planes.

Raytracing calculations and expected performance

Thermal analysis using hourly DNI data for Évora (Portugal) and Hurghada (Egypt)

Plant configuration considered. The total number of rows is 23.

Assumptions:

- 250 000 m² of mirrors;
- T_{in} = 290 °C, T_{out} = 565 °C;
- Turbine efficiency = 0.42;
- Steam generation efficiency = 0.98;
- Intersect factor = 0.99;
- Inlet pipe length = 1100m, Outlet pipe length = 550m;
- Receiver losses at 565°C = 740W/m;
- Losses inlet pipe (290 °C) = 65W/m, losses outlet pipe (565 °C) = 130W/m
- DNI Faro = 2286 kWh/m²/yr, DNI Hurghada = 3044 kWh/m²/yr

Raytracing calculations and expected performance

Thermal analysis using hourly DNI data for Évora (Portugal) and Hurghada (Egypt)

Location	Thermal Energy delivered (kWh)	Electricity produced (kWh)	Total average yearly efficiency (kWh)
Évora, Portugal	1.94 x 10 ⁸	7.96 x 10 ⁷	0.140
Hurgahda, Egypt	3.02 x 10 ⁸	1.22 x 10 ⁸	0.163

Project ALFR-ALENTEJO Experimental demonstration

Testing of two ALFR collects on PECS and EMSP platforms

INIVERSITY

OF ÉVORA

- Goals:
- Characterization of a 44m² collector on PECS platform using the ISO9806 norm. Thermal oil will be used as heat transfer fluid (HTF) up to temperatures of 380°C.
- Characterization of a 440m² collector on EMSP platform connect to a thermal thermocline storage system. Molten salts will be used as HTF and storage media up to temperatures of 560°C. Tests to be carried out: Vespertine Start-up/drainage; operations modes (startup/dhut-down, non-solar profile, emergency and critical failure).
- Experimental validation, cost-analysis and eco-design strategies for future cost reduction and market penetration.

Project ALFR-ALENTEJO Current status

Development of collectors by IDEA company (Italy)

The current pandemic situation induced important delays on the implementation of the collector (impacts on works, material access/cost and shipping/delivering timings). An extension of the project is foreseen.

Project **ALFR-ALENTEJO** Main R&D results

- Scientific papers
 → 3 so far [1-3]
- Conferences
 - → CIES 2020 Conference [4]
 - → EMSP Symposium
- Reports
 - \rightarrow 1 submitted last December 2020

Upcoming activities and conclusions

Installation and operation of the two collectors

→ Both collectors will be finally installed both on PECS and EMSP platform for future testing

Pandemic impact

→ COVID-19 pandemic outbreak has been the major problem regarding the development of the project and its implementation. Measures to surpass these difficulties are already taking place (extension of contract).

Experimental results

■ → The activities to be carried out are essential for the validation of the concept and development of new strategies for further cost-reduction.

Project ALFR-ALENTEJO Acknowledgments

Project supported by:

UNIÃO EUROPEIA

Fundo Europeu de Desenvolvimento Regional

Project **ALFR-ALENTEJO** References

- [1] Santos, A.V., Canavarro, D., Horta, P., Collares-Pereira, M., 2021. An analytical method for the optical analysis of Linear Fresnel Reflectors with a flat receiver. Solar Energy 227, 203–216. https://doi.org/10.1016/j.solener.2021.08.085.
- [2] Santos, A. V., Canavarro, D., Collares-Pereira, M., 2021. The gap angle as a design criterion to determine the position of linear Fresnel primary mirrors. Renewable Energy 163, 1397–1407. <u>https://doi.org/10.1016/j.renene.2020.09.017</u>.
- [3] Cavaleiro, S., Santos, A., Canavarro, D., Malico, I., Janeiro, F., 2021. Optimization of Linear Fresnel Reflector Solar Collectors Using a Genetic Algorithm. SYMCOMP 2021 Conference 25–26.
- [4] Canavarro, D... [et.al.] ALFR-Alentejo: demonstração experimental de um prótipo advanced linear Fresnel reflector em Évora. In: CIES2020: As Energias Renováveis na Transição Energética: Livro de Comunicações do XVII Congresso Ibérico e XIII Congresso Ibero-americano de Energia Solar. Helder Gonçalves, Manuel Romero (Ed.). Lisboa, Portugal: LNEG, 3-5 Novembro, 2020, p. 177-183 10.34637/cies2020.1.2018

